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Dear Sirs,

This letter report, for the period of 1 June 1993 through 1 December 1993, describes the
activities supported by the ASSERT grant. A student, John Lillis, is supported under this
grant. John has a strong background in theory and will perform some analytical work on
clustering and partitioning (for our test pipe formation) to minimize the addition of test
circuits and delay. This is especially useful in constructing our processing plane. We started

I• with two areas.

The first area of research is Data-Flow Clustering. In synchronous circuits (described in
terms of registers and combinational nodes) it is known that the feedback loops are dominant

I'- in determining the achievable clock period for the circuit. More precisely, the maximum
delay to register ratio over all loops in the circuit (called the iteration bound) is a lower
bound on the clock period. Furthermore, if the combinational nodes are fine-grained in

' ' nature, the iteration bound very closely reflects the achievable clock period through retiming.
j : However, because of size constraints it is often necessary to partition such a circuit into

multiple modules (for example FPGAs). In such a situation, inter-module delay can be

"W, . substantial compared to intra-module delay. Accordingly, we study the problem of clustering
the nodes of the graph into different modules such that the iteration bound of the resulting
circuit (where inter-module delays are taken into account when determining the delay-

----- register ratio of a loop) is minimized. We have shown that this problem is NP-Complete

even if replication of combinational nodes is allowed (ie, provided all its inputs are available,
a node may appear in two different modules so as to absorb some of the inter-module delay
costs of different loops; this is a popular method for minimizing delay in acyclic networks).
Accordingly, we have proposed a heuristic solution to the problem and are conducting
experiments to evaluate its effectiveness.
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The second area of research is network partitioning. We study the classical problem of
finding the Minimum-Cut in an undirected graph, given source and sink nodes, s and t. We
reformulate the problem as a continuous placement problem. We show the correspondence
between the Min-Cut problem and the placement problem which is then solved iteratively
using gradient methods. In addition, this method has good potential for efficient parallel
implementation. We provide experimental data on the effectiveness of our approach. This
work will be submitted to Information Processing Letters. A draft of the paper is in

This summarizes our research progress. Please do not hesitate to call me if this is not

Best regards,

Ting-Tin L'....
(619)534- 38
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Appendix A

A Gradient Approach To The Minimum Cut Problem

Chung-Kuan Cheng, John Lillis and Ting-Ting Lin

University of California. San Diego

La Jolla. CA 92093

Abstract

We present a gradient approach to the classical Min-Cut problem for cap)acitated undirected

graphs. This is done by showing the correspondence between a continuous minimum placement

problem and the rmin-cut problem. We demonstrate the use of the Suc'.sivE Orr RIlaxationl

(SOR) iterative method for solving the continuous formulation. The feasibility of this approach

is demonstrated experimentally. We believe this method has potential for soccessful parallel

implementation

1 Introduction

We present a gradient approach to the problem of finding the minimum cut in a weighted,

undirected graph G = (V, E) given source and sink nodes s and t, and edge capacities cj,, for

(i~j) E E (ci,j is considered to be 0 if (i,j) V E). Our approach is inspired by the Gordian-L

placement tool [1]. The paper is organized as follows:

9 We will show that we can find the rmin-cut in a graph by minimizing the function F()=

2 (i,,)EE ci,.lXi -xil where each node i in the graph has a real-valued variable xri associated

with it except x, and xt which are fixed.



e We give an approximation to the above formulation by modeling it as a nonlinear resistive

network.

* We show how to minimize the above approximation by way of the Successive Over-

Relaxation (SOR) method to take advantage of the possible sparseness of the graph and

the properties of the admitance matrix derived from the above approximation.

e Last we give experimental results of this approach.

2 Problem Formulation

Let G = (V. E) be a graph where V is the set of vertices and E is the set of undirected arcs.

Further, for each arc (i.j) E E let c,.j be the capacity of that arc.

A minimum cut problem is, given N = (V,. E) and two vertices .s. I E 1'. to partition V into

disjoint sets V,1 and 11 where s E V, and t E V1 such that

iE•V. jE It

is minimized. le, the total capacity of the edges between the partitions is inimnu in.

Let f(x.i, x ) = cixi - x.J. Now consider the continuous miniminmium placement problem

which minimizes the objective function

:(.F)= Z f(.r,..i) (2)
(ifl•EE

With x, and xt fixed, we claim the optimal solution to the above minimizalion problem captures

the minimum cuts of thle graph. In the following, we assume that .r, and .rx

Lemma 2.1 If .1 = x, ..... r, yields the Yniniimu) for (xjprc.,sion 2. an in (.r, < in < rt and

7n not equal any xi) partitions V into two ,ct.V I;7, = {il.r, < } m i)id ;,, = {ix, > i } (,1

this partition is a iniimurn cut.
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di di dp-i dp

Ii ........................ I I I
Xý X , , X, X +,= X

1s 3 p_ Xp

Figure 1: Illustration of reformulatic ,. Each segment i defines a cut between nodes on the left

of the segment and the nodes on the left. The value of this cut is t1,

Proof: Let t,,in be the minnimum cut value for graph G. Let p + 1 he the njumber of dislinct

values among the .ri s and let x'.,... X+ be these distinct values in ascending order (ie. there

are p "'segments" between .r and .rt). We define t i = r,_<j Z-, >- c, InI olther words. 1,

is the tolal capacity of the edges crossing the i'th segment. We also define d, as 1he lengih

of the i'th segment (.i,'+ - X'). This formulation is illustrated in the figure 1. Nolice lhal

,2 di = .rj - x,. ('learlv none of the ti's can be less than t,,1in as this would define a choeaper

cut. Therefore, we have

P

F(Y) tidi >_ _ (. i(',x -a'.) (3)
j=1

Thus. in order to minimize F(.F), we need ti = (',,-,i,, Vi which correspond to a cut.

3 Approximation By A Nonlinear Resistive Network

\We transform our placement problem into a nonlinear resistive network. Let .rx be the voltage

of node i. Given a constant (. for each edge (i.j). we cOnIStruct a nonlinear resistor connecting

nodes i and j with a conductance. aT.. defined as follows:
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= c,,/(Ix, - aJI if x, - xj > >
(Ti,j = (I

I c,.i/( if ix, - .•r I

Figure 2 graphically depicts the conductance a.

The current flowing from node i to node j is equal to the product of the voltage difference

i., - xjl and the conductance (7,.J. i.e.

{ •,.Jc,,j if L.C, - xr I >'
(,r, - = (5)

1 ,.J ( .r , - .X., l t If I .r, - 'I-_, < (

where ý,. = 1 if .r, > C.: , -1 if ., < .1-,. Equation (5) is an approximattitn (otf the

partial derivative of our objiet ive function F with respect to .r',. Cottsequteiy . lkirchIhlmots

current law [31 in the nonlinear resistive network corresponds to the tcC.•;i TV ci )liJ i f a

zero gradient. \Ve claim the analogy betwevei our probhem and tho above resistvive liet\work.

Theorem 3.1 (uict a constan• T. fN r ixi.t.,s an Ffor thf cot'ductfayc( (quatiOI?

( -• .ach that the. coltiagc .,oh1ttiol of III( trr.,forlmt (I nolilwar rtf .mstr h ork"i. L,(III ,apr,,."imat

.,so/lui I of F u1 with tI ti irt botud T oni IhN Paht of F.

Proof: To prove the theorem. we iittrodu(cv the funcliOll.

/'(") ! 21,r1 - if I.,1 > ,

a2 / ¢ if I. <_

and a pot enitial fulnction a pproximalintg lie objective funct ion V.

w here

(.,.-3 c,3 /h(.r, -- ." ) (7)
( , I



(I(.x.. x.)

x xj

Figii re 2: BMns I ra tion of (-.x, x,) a it d a(.r .) Ici ;1 and C,. 1.

Fig ure 2 graiph icaiv depkjict 0 1.

\\e prove tile theoremi bY proving" tile three ffOwIngIIU lent Iii as ( 1 ituo(fS ipeIj)V1' rIII lie ;Ap

penidix ):

Lem ma 3.1 Iitc ,olalIion of Ih( nonlilif (IIr n~.ti(mIwork (5~) (tII(s1N miiti mi ii F

Len-ima 3.2 Girtn a posiiur ninnb~ r .r ) - q,.r )j < holdohs if ( h- I~-

is I1 li mim~bri of ulq~s in Ilic graphi.

Lemtma 3.3 Pitu nie qua/fly JF( .r) - 41.r )I < - hold.s if K

Therefore fromtHhe abhove I hree lemmas, we have proved Tlieorerii *l
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0. SOt E (-init

1. Set initial X vector

2. Calculate dlij according to current x vcctor

3. Solve GI1 .rl = -GI 2X2 as a lincar rcsistire n•twork.

4. If Change in Obfcetive Function is lcss than A

E = • C-factor

.5. Jcp~at st(ps 2. 3 and 4 until con crg nec

Figure 3: Iterative algorithm for solving the continuous placement problem. Step 3 is performed

by the SOR iterative method. In our experiments. A is a function of ( and rhe current objective

'P. See Experimental Results section for details.

4 Piecewise Linear Algorithm

\Ve propose to solve our resistive network by starting at an intitial vector .F. Next. we treat the

circuit as a linear resistive network, and find the solution with the Successive Over Relaxation

(SOR) method [2] We then update the current solution ,F and repeat the process until the

solution converges (see figure 3). In the figure. .r represents the variable node positions and

x2 denotes the fixed node positions (xr, and xt), G1 1 and 012 denote the subinatrices of

admittance matrix derived from o* corresponding to vectors x, and .r2. lence, the problem

reduces to solving GII.r1 = -G 1 2 X2.

In addition to or (4). we introduce the following function:

1/jXr if 1aj > (
g(x) = (s)

1/c if t.rl < -

In the following, let .x and . be the vector at the kth and k + 1st iterations respectively. In
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addition, for notational convenience, let

.= - (9)

ii - (10

\Ve introduce

Ps..)= • ~g•q)rj (11 )

(i.j)

P(.i. .) = f cijg(lj),-j 2  (12)
(i.j)

Theorem 4.1 For each itcration of steps 2.3 and 4. the potential function %P(.r) is strictly

d~crlasing.

\Ve prove T(x) > T1(..) by proving the two following lemmas (proofs appear in lie appendix).

Lemma 4.1 Before the solution converges. P(.,.f) > P(.ý,?)

Lemma 4.2 Bcform the solution COnt'crg(s,

2T(.t)- P(.x) > 2(.1') - P(. ) (1.)

\We conclude the proof of the Theorem 4.1 from the preceding lemmas.

5 Experimental Results

In this section. we p)resent experimental results of our approach. Test graphs were gotten from

the washington.c (developed by Richard Anderson and students at the 'niversitv of \Vash-

ington) program at DIMACS. It generates a variety of graphs for the directed version of the

min-cut problem. \'e use a post process to convert these graphs into uni(ireclcd graphs.

In our experiments, we fixed x, = -100.0, xt = 100.0, initial e = 200.0. (-factor= 0.S0 and

A = F(.r) • 10-3. In addition, we set w, the relaxation parameter of SO1 to he 1.9.



jV1 }Ej SOIR Executions Total Iterations CPU tinhe

102 590 31-1 8177 5.6

227 13-10 -423 11538 1 S.7

401 2380 656 12-136 40.6

Table 1: Experimental results

6 Concluding Remarks

N\\e have demonstrated the theoretical foundations and experimental feasibility of a gr;adient

approach to the Min-Cut problem. Future work may include detailed analysis of Ihe colvrgence

rate. more exhaustive evaluation of algorithmic parameters and parallel jinplenientatiion.
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7 Appendix

W\e present proofs of lemmas stated in the body of lie paper.

Lernma 3.1 1h( soluf ion of th( noilin a r( sis*ji( I, twork (5d) dr I h /u Iin IT ( 11n .r

Proof: The lem ma follows the reference [3]. pp. 776. Since equalion (6) is contimiius in its

first derivative, its gradient is equal to zero at a ininimimiin soltilion. We cau derive Ilmat the
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KCL equation for the nonlinear resistive network is equivalent to the necessary condition that

the gradient of (6) is zero, which proves the lemma.

Lemma 3.2 Given a positive number ,. I F(x) - '(x)l <_ holds if - l . uhuc <L

is the numbcr of (dgcs in the graph.

Proof: Consider the following two cases:

(i) Ixi - ejI > (

From equations (2) and (6). we know that

if(x0. ) - x,(.r 1.. )= c,.,/2 ( 1)

(ii)~X X., .~l_

1- .rR xI

Therefore. given l - we have

I (.x) - \'(x)I < J (., - ,) - (16)

0 -J)

Lemma 3.3 The inl(quality 1F(x) - 1(.) < hohld if, <_ IX,,-,,

Proof: In lhe following, let .r and .-r be the reslectiwve global minima of 1-(.t) and 1'(x.r) I.e.

['(.r) <_1(.r) Vxr 17 )

TI(.ý) < p(.r) V.r )

\Ve can derive

I"(X,") - lp ( .?) = F 1 ," )x -I"( + f ,(.i') - q1(.0' 9

Since F(.r) - F(.I) < 0 by definilion, from tlie previous lemnma. we hav,

(.r) - '(.?*) < l.(.) - F(.?) + "< (20)
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Similarly, we can eiCijve

-. Th - Uqi) T-.) -11(P) + 'I'(.i') - 411(.-) > -;.(21)

Thus from ile(Jualitics (20) and (21).w conclude I hat

UP) -'l'wI• -,(22)

Leninia 4.1 Ilcfarc fh( 'olutil On Y I-nYcr( .. '( .r.x ) > P(x.r

Proof: We use thle liroperi-y of the linear rei(,st we ntclwouk [31. pp. 770. lhlo 11

power disipation of the network occurs at the oiilv solliitjuioft ieho twt eia I l1"I

before tile Solution converges, the 'ohlitoll of ~11=-( 1 r Iva~Jrv~tI ~ ~

r-educes thle power- disý,ipat ion of the lina e'lwehumýir.je /

Lemnma4.2 I1(foi-6 thc .,obitfion eu

2 11i -J(x h.. x > 2 T P ( x. .1 1

Proof: WVe can (lerve thlat

211x)-C h xI); V ( i l(I;I-l~ j

We' now show t hat in the followimg four rcases.

h( ) !/ ) 2 > 1(*1 (.r- r )r 2  Vi.j

case (i ) Ix, < . jx-1j <

I,.r1 (x U ( ).r% 2 2 r, - 0
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case (ii) jx _ .I.r~ > (

22

g j - q(.r- jX).r , 1 - .(
C (

( x- j ) g ( .r -) ., ,2  . .7 , - 2 2-
___-__ __=________ < C) (30 )

( (

case (iii) l.'•Il > ~Ci I<

h( •j ( ~ )d - 21x;2 l - C - = = . W A"=l~;, - C (31])

h(.r, ) - g(.fj).r~ 2 = -r2 2 'r.,(1 'r.,I - () 1% -i )

case (iv) 1xJ > . l >

h,( xi ) - g(.% -, ) .,< I.,% I - (3:3 I

(3

hl(x~)- g( ).'.-1.2 3K 31

Since

•1> Ž• >_ lr•I~i - .ri 2 :5

we have

21_ _,,_ 2 < I. - C (III
Ix- I ..

Thus. we can derive

h(.r., ) - 3(., ) < • ., I - C :17

We conclude from cases (i) - (iv) that

h(.Ti,) - x(--) )f 2  > h(.) - 2(s)
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